

# THE FAST-FORWARD PATH TO NFV In Latin America

Ivan Parra

#### TRANSFORMING THE NETWORK MAKING IT TELCO CLOUD READY



### **Network Transformation**

| From                                         | То                                                              | Value                            |
|----------------------------------------------|-----------------------------------------------------------------|----------------------------------|
| Dedicated, proprietary network appliances    | Software on industry standard servers                           | Broader Vendor<br>Choice         |
|                                              |                                                                 | Faster Provisioning              |
| Proprietary network<br>management interfaces | Open, industry standard management protocols                    | Evolutionary Network<br>Upgrades |
|                                              |                                                                 | Network Orchestration            |
| Static network<br>function devices           | Virtual appliances, custom<br>built to workload<br>requirements | Lower Costs                      |

#### **General Strategy**



Placeholder Footer Copy / BU Logo or Name Goes Here

#### **Comms Service Providers Challenges**





#### **Datacenters Hierarchy**





# **VNFs Distribution**

#### National Datacenter

- Critical Mission
- Management Functions
- Tier DC
- Orchestration functions
- Large Databases
- Large Storage
- Large Bandwidth

#### **Regional Datacenter**

- Distributed VNFs
- Exit to the Internet
- Close to Edge
- Traffic Overflow

#### MAEC

- Video analytics
- Location services
- Internet-of-Things (IoT)
- Augmented reality
- Optimized local content distribution
- Traffic
  Optimization
- data caching

#### **PNFs**

 Physical network functions: Those that due to complexity in virtualizing or not having long term evolution do not have a clear roadmap towards virtualization



#### **Fast-Forward Path To NFV**



### **Timeline?**





# VNF Dimensioning (Performance / Capacity)

| Function | Variable       | Installed<br>Capacity | Used<br>Capacity    | EOY 1      | EOY 2      |
|----------|----------------|-----------------------|---------------------|------------|------------|
| PCRF     | Gx Session (M) | Current<br>capacity   | Today's<br>capacity | Projection | Projection |
|          |                |                       |                     |            |            |
|          |                |                       |                     |            |            |
|          |                |                       |                     |            |            |
|          |                |                       |                     |            |            |

## **VNF** Capacity

| Maximum number Gx TPS             |              |     |      |  |  |  |
|-----------------------------------|--------------|-----|------|--|--|--|
| Maximum Capacity x VM             | TPS #        |     |      |  |  |  |
| 1vCPU                             | TPS Per v    | CPU |      |  |  |  |
| 1GB Memory                        | TPS Per GB   |     |      |  |  |  |
| 1GB Disk                          | TPS Per Disk |     |      |  |  |  |
| VNFC NAME VNF Component           |              |     |      |  |  |  |
| VNFC Flavor: CPU, MEM GB, DISK GB | CPU          | MEM | DISK |  |  |  |



# **NFVI Dimensioning**

What's needed?

Minimum:

VM Flavor: vCPU,vRAM, vStorage

**Advanced:** 

VNFC Name/Description, Instantiation, Redundancy Model, Minimum and Maximum # of VM supported, State, Physical CPU, NICS, Bandwidth, Ports, External Storage, EPA Functionalities, VM over Servers Layouts, Physical Layout



### **NFVI Dimensioning**

|      | V                                    | NF               |                       | VNEC                      |                                                   |                                  |                         |                                         |                                    |                                                           |           |                                     |                        |             |              |                  |             |                                           |                         |                         |
|------|--------------------------------------|------------------|-----------------------|---------------------------|---------------------------------------------------|----------------------------------|-------------------------|-----------------------------------------|------------------------------------|-----------------------------------------------------------|-----------|-------------------------------------|------------------------|-------------|--------------|------------------|-------------|-------------------------------------------|-------------------------|-------------------------|
|      | Na                                   | me               |                       |                           |                                                   |                                  |                         |                                         |                                    |                                                           |           | Name                                |                        |             |              |                  |             |                                           |                         |                         |
| Name | Load<br>Balancing<br>Model           | Scaling<br>Model | Internal<br>Structure | Name of<br>Subfunct<br>on | Function<br>i al<br>descripti<br>on               | Instantiat<br>ion                | Redunda<br>ncy<br>Model | min # of<br>VM in<br>redundan<br>t mode | scaling<br>granulari<br>ty<br>[VM] | scalabilit<br>y span<br>(max # of<br>VM<br>supporte<br>d) | State     | # of VM<br>in<br>redundan<br>t mode | Physical<br>CPU<br>[#] | vCPU<br>[#] | vRAM<br>[GB] | vStorage<br>[GB] | vNIC<br>[#] | Physical<br>NIC X-<br>Port/XXG<br>b Speed | Bandwidt<br>h<br>[Mbps] | Ext.<br>Storage<br>[GB] |
| IMS  | VNF-<br>internal<br>Load<br>Balancer | Auto<br>scaling  | Modular               | VNFM                      | VNF<br>Manager                                    | Non-<br>paralleliz<br>able [1,1] | active-<br>standby      | 2                                       |                                    |                                                           | Stateless | 2                                   |                        | 3           | 24           | 320              |             |                                           |                         |                         |
|      |                                      |                  |                       | EM                        | Element<br>Manager                                | Non-<br>paralleliz<br>able [1,1] | active-<br>standby      | 2                                       |                                    |                                                           | Stateless | 2                                   |                        | 2           | 16           | 160              |             |                                           |                         |                         |
|      |                                      |                  |                       | LB                        | Media<br>Resource<br>Broker<br>(Load<br>Balancer) | Non-<br>paralleliz<br>able [1,1] | active-<br>standby      | 2                                       |                                    |                                                           | Stateless | 2                                   |                        | 3           | 48           | 80               |             |                                           |                         |                         |
|      |                                      |                  |                       | MRF-C                     | MRF-<br>Control<br>Subfuncti<br>on                | Paralleliz<br>able [1,n]         | active-<br>standby      | 2                                       |                                    |                                                           | Stateful  | 2                                   |                        | 4           | 16           | 160              |             |                                           |                         |                         |
|      |                                      |                  |                       | MRF-P                     | MRF-<br>Processin<br>g<br>Subfuncti<br>on         | Paralleliz<br>able [1,n]         | active-<br>standby      | 2                                       |                                    |                                                           | Stateless | 2                                   |                        | 7           | 56           | 240              |             |                                           |                         |                         |

### **NFVI Dimensioning**

| slot |                | CPU0    |             |             | CPU1        |         | CPU socket   |
|------|----------------|---------|-------------|-------------|-------------|---------|--------------|
|      | VNFM (act) MR  | F EM    |             |             |             |         | VM type      |
| 8    | 24             | 16      |             |             |             |         | Memory (GB)  |
|      | 320 1          | 60      |             |             |             |         | Storage (GB) |
|      | 0 1 2 3        | 4 5 6 7 | 7 8 9 10 11 | 0 1 2       | 3 4 5 6 7 8 | 9 10 11 | CPU          |
|      | VNFM (stby) MR | F EM    |             |             |             |         | VM type      |
| 7    | 24             | 16      |             |             |             |         | Memory (GB)  |
| /    | 320 1          | 60      |             |             |             |         | Storage (GB) |
|      | 0 1 2 3        | 4 5 6 7 | 7 8 9 10 11 | 0 1 2       | 3 4 5 6 7 8 | 9 10 11 | CPU          |
|      | MRF-C (act)    | MRF-F   | P (act)     | MRB (act)   |             |         | VM type      |
| 6    | 16             | 5       | 6           | 48          |             |         | Memory (GB)  |
| 0    | 160            | 24      | 40          | 80          |             |         | Storage (GB) |
|      | 0 1 2 3        | 4 5 6 7 | 7 8 9 10 11 | 0 1 2       | 3 4 5 6 7 8 | 9 10 11 | CPU          |
|      | MRF-C (stdby)  | MRF-P   | (stdby)     | MRB (stdby) |             |         | VM type      |
| 5    | 16             | 5       | 6           | 48          |             |         | Memory (GB)  |
| 5    | 160            | 24      | 40          | 80          |             |         | Storage (GB) |
|      | 0 1 2 3        | 4 5 6 7 | 7 8 9 10 11 | 0 1 2       | 3 4 5 6 7 8 | 9 10 11 | CPU          |
| 4    |                |         |             |             |             |         | VM type      |
|      |                |         |             |             |             |         | Memory (GB)  |
|      |                |         |             |             |             |         | Storage (GB) |
|      | 0 1 2 3        | 4 5 6 7 | 7 8 9 10 11 | 0 1 2       | 3 4 5 6 7 8 | 9 10 11 | CPU          |



# How Intel can help you?

Documentation

- •RFx/SoC
- IMS
- Data Center
- •NFVI
- •OCS
- Orchestration
- •RAN
- •RSA
- •SDN

•SD-WAN

Service Chaining

- •SoC
- •vCDN
- vCPE
- vEPC
- •vHE
- •vSBC

#### PoC / Trails / Financial

- Test Protocols
- vEPC
- •SDN
- Hypervisors
- NFVI
- •VIMs
- VNFs
- Orchestration
- Generic documents
- Hardware / Testbed
- Technical Resources
- Compliance Analysis
- Data Center Best Practices
- Discounts
- Licensing models

#### Training

- Workshops
- Newsletter
- Technical Events
- Technical Experts
- •Ecosystem Partner
- •Agnostic Partner
- •Network Builders University



#### What to watch

- VNFs using blades, instead of resources...
- VM sizing, will vary from vendor to vendor, so hard to model hardware utilization.
- Scale In/Out times: Hypervisor does affect.
- Onboarding Times: Relative to local support...but is a fact that the second time is 50% faster.
- Throughput Capacity: Which interface you are using? What is the requirement?
- Theoretical vs Real: Data is not consistent.

#### What to watch

- Technical vs Political: It will depend on who needs to work with whom.
- Keep agnostic: TEMs will try to persuade you.
- Design: Open Software will need of integration. Focus on orchestration/automation.
- Open Source versions: Backwards compatibility is an important aspect.
- Root Cause analysis: Avoid finger pointing, watch for console log of the VNF.

# More Challenges :(

- Technical training on new NFV/SDN paradigm.
- Different VNFs sharing a common COTS hardware (Who's responsible?)
- Maturity from most of the solutions (Too much slideware. On PoC's different story)
- In the beginning few standards, nowadays, too many (uncertainty)
- Few end to end solutions multivendor, still offered as Silos.
- High dependency from system integrators (Customization, Onboarding, governance model, support...)
- Exploding existing Central Office locations (retrofitting) vs Greenfield Telco DC.



#### **Intel® Network Builders**

#### A community enabling Intel architecture-based, open standards solutions for the Network Launched 2 years ago | Over 280 partners



### **University Overview**

Intel<sup>®</sup> Network Builders University is a comprehensive network functions virtualization (NFV) and software-defined networking (SDN) training program.

- +200 videos and over 50 hours of programming
- Dozens of white papers, webinars, podcasts, and related materials

#### Fast-Track Curriculum -3 Convenient Levels

Watching *all* the University videos could take weeks, even months. Your time is valuable, so a fast track has been designed at 3 Levels:

- Level 1: Introduction –SDN/NFV Fundamentals
- Level 2: Experienced –Intel Technology Enablement
- Level 3: Advanced Engineering Deep Dive



# **Getting Started**

Prior to your Campus Tour call, you will be emailed an **Orientation Guide**. The Guide provides instructions for registering with the Intel Network Builders Program:

#### **Registration and Login**

At <u>https://networkbuilders.intel.com</u>, click the login button at the upper right.





#### Content

At the end of each training video, you can take a quiz to test your knowledge. The quizzes are multiple choice, and you have multiple opportunities to retake the quiz until you pass.

Chapter 1: Using Open vSwitch and the Data Plane Development Kit To Accelerate Virtual Switching. In this course, James Chapman, Intel **Related Materials** Platform Applications Engineer in the (intel) Network Platforms Group, provides an overview of Open vSwitch and the Data Plane > Open vSwitch (Website) Development Kit(DPDK) and demonstrates > DPDK (Website) how combining the two accelerates virtual LOPMENT switching. **Quiz Status** VIRTUAL SWITCHING Once you have watched the video, please take the guiz. Take Ouiz



#### **Customized Pathways**



#### **Foundational Learning Pathway**





# Level 1: Introduction SDN/NFV Fundamentals

This program introduces Intel's technology, architecture and vision, with foundational training courses on network functions virtualization (NFV), software defined networking (SDN), and management and orchestration (MANO).

•Course 1: SDI Vision

- Course 2: Network Transformation
- •Course 3: NFV Technologies
- •Course 7/Module 1: NFV/SDN Essentials Series –Network Virtualization
- •Course 8/Module 2: NFV/SDN Essentials Series –Virtualization Concepts
- •Course 9/Module 3: NFV/SDN Essentials Series –Network Functions Virtualization
- •Course 11/Module 5: NFV/SDN Essentials Series –Software-Define Networking
- •Course 13: Containers 101: The Technology that Drives the Cloud



Placeholder Footer Copy / BU Logo or Name Goes Here